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SUMMARY

The discovery of the cosmogenic radionuclide 7Be on the front surface (and the front
surface only) of the LDEF spacecraft (ref. 1) has opened opportunities to investigate new
phenomena in several disciplines of space science. Our experiments have shown that the 7Be
found was concentrated in a thin surface layer of spacecraft material. We are able to explain our
results only if the source of the isotope is the atmosphere through which the spacecraft passed. We
should expect that the uptake of beryllium in such circumstances will depend on the chemical form
of the Be and the chemical nature of the substrate. We have found that the observed concentration

of 7Be does, in fact, differ between metal surfaces and organic surfaces such as PTFE (Teflon).
We note however that (a) organic surfaces, even PTFE, are etched by the atomic oxygen found
under these orbital conditions, and (b) the relative velocity of the species is 8 km-ls relative to the
surface and the interaction chemistry and physics may differ from the norm.

7Be is formed by spallation of O and N nuclei under cosmic ray proton bombardment. The
principal source region is at altitudes of 12-15 km. While very small quantities are produced above
300km, the amount measured on LDEF was 3 to 4 orders of magnitude higher than expected from

production at orbital attitude. The most reasonable explanation is that 7Be is rapidly transported
from low altitudes by some unknown mechanism. The process must take place on a time scale
similar to the half-life of the isotope (53 days).

Many other isotopes are produced by cosmic ray reactions, and some of these are suited to
measurement by the extremely sensitive methods of accelerator mass spectrometry. We have
begun a program to search for these and hope that such studies will provide new methods for
studying vertical mixing in the upper atmosphere.
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INTRODUCTION

TheLDEF spacecraftwaslaunchedby thespaceshuttleChallengeron7 April 1984intoa
nearlycircularorbit with aninclinationof 28.5° and an altitude of 480 km. It was retrieved by the
space shuttle Columbia on 12 January 1990 at an altitude of 310 km. Because of its large mass,
long space exposure and the wide variety of materials onboard, the LDEF provided a unique
opportunity for induced radioactivity studies. These measurements are still in progress and will be
reported elsewhere.

The LDEF spacecraft has a twelve-sided cylindrical aluminium structure, 9.1 m long by 4.3
m in diameter (see Fig. 1). Its structure consisted of an open grid to which were attached various

experiment trays designed to measure the effects of long space exposure on spacecraft materials
and components. Throughout its orbital lifetime, the spacecraft was passively stabilized about all
three axes of rotation, allowing one end of the spacecraft to point always toward the Earth, and
fixed leading and trailing with respect to the orbital motion.

After its return to the Kennedy Space Center, gamma ray spectra were obtained along each
of the 12 sides of the spacecraft using a germanium detector array provided by the Naval Research
Laboratory. The gamma-ray line at 478 keV from the radioactive decay of 7Be was observed to
emanate strongly from the leading side of the spacecraft. (ref. 2) The weaker signal observed from
the trailing side of the spacecraft was later traced to the gamma-ray flux from the leading surfaces
after attenuation from passing through the body of the LDEF.

EXPERIMENTAL MEASUREMENTS OF RADIOACTIVITY

Individual components were brought to the Marshall Space Flight Center to quantify the
residual radioactivity on the LDEF. Much of the counting work was performed at other radiation
laboratories around the country. The authors are particularly indebted to Dr. Charles Frederick of
the TVA Westem Area Radiation Laboratory, Muscle Shoals, Alabama for many of the A1 clamp
plate assays. A high-purity germanium detector inside a low-level background facility was used to
obtain spectra of small aluminium and steel samples taken from the leading and trailing sides. In
F!gs 2 and 3, gamma-ray spectra of two identical aluminium plates and two steel trunnion end

p_eces taken from the leading and trailing sides of the spacecraft are shown. A clear 7Be gamma
ray signal was seen on materials from the leading side, with little or no signal above background
on the trailing side.

In Figure 4 the 7Be activities for aluminum tray-clamps taken from trays all round the
LDEF are shown, clearly demonstrating the leading edge effect. While 7Be is also produced by
spallation of A1 nuclei in the spacecraft by cosmic rays, first order calculations have shown it to be
barely measurable. Also the known anisotropy of the cosmic ray flux (the east-west effect) should
have resulted in higher production on the rear (west-facing side) of the LDEF. Another isotope
22Na, produced by spallation of spacecraft A1, clearly shows higher activity on the trailing edge of
the satellite. Figure 5 shows tray clamp activities of 22Na about twice as high on the trailing as on
the leading edge, in agreement with the east-west anisotropy of the cosmic rays and trapped

protons. This evidence clearly pointed to a source of 7Be in the atmosphere being swept up by the
front surface of the spacecraft.
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In Table1,themeasurednumberof 7Beatomsperunit areaonvariousspacecraftsurfaces
is shown.The results are corrected to the retrieval date of 12 January 1990 and for the offset angle

from the leading direction. The areal density for 7Be on the aluminium and steel is the same within
the experimental uncertainty, and is apparently not a strong function of the type or surface
condition of the metal. However, the Teflon thermal coating which was used on many LDEF

experiment trays, has a density of 7Be an order of magnitude lower than that found on the
aluminum surface. The reason for this apparent difference in uptake efficiency is unknown, but
could be related to the covalent-bond structure of the material. The explanation may be
complicated, also, by the observed erosion of the Teflon surface by atomic oxygen.

TABLE 1

LDEF Be-7 Surface Concentrations*

Material Be-7 Areal Density
(x 10e5 atoms/cm2)

Stainless steel trunnion face

Polished aluminum plate- Exp. A0114

Anodized aluminum experiment tray clamp

Teflon thermal cover

5.3 +- 0.7

6.7+- 1.0

4.6 +- 0.5

0.9 +- 0.2

* Corrected for decay since recovery and for surface orientation relative to spacecraft ram
direction.

7Be PRODUCTION, DECAY AND DYNAMICS IN THE ATMOSPHERE

The short-lived isotope 7Be was first detected in the atmosphere by Arnold and A1-Salih in
1955, (ref. 3) and later mapped by others as a function of altitude and latitude (ref. 4-8). It is
produced in the atmosphere by high-energy cosmic-ray interactions with air as are other
radioisotopes such as 14C and 3H. Once formed, 7Be ions are presumed to oxidize rapidly and
attach to small aerosol particles, which provide a downward transport mechanism from peak
production regions of the atmosphere (ref. 9-16). The primary removal process for 7Be, which
occurs on a timescale comparable to its half-life, 53.2 days, is the washout of the aerosol-attached
7Be in rain water (ref. 3-6).

At a given latitude above N20 km, the production rate of 7Be varies vertically and directly in
proportion to the oxygen-nitrogen gas density. Peak production per unit volume occurs in the
lower stratosphere, at 12-15 kin, below which the cosmic-ray flux is substantially attenuated. At
higher altitudes, the number of 7Be atoms produced per unit volume decreases rapidly, but the

number of 7Be atoms produced per unit mass of air is essentially constant. Balloon and aircraft
measurements (ref. 6, 15) are in approximate agreement with this, although few measurements
extend much above the peak production altitudes.

From the measured densities of 7Be on LDEF surfaces and in making some simplifying
assumptions, we can estimate the concentration of 7Be atoms per cm3 of air at the LDEF orbital
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altitude. Since the lifetime of LDEF is much greater than the mean lifetime of a 7Be atom, and
ignoring changes in altitude over the last 6 months in orbit, we assume a steady state relationship
between pick-up of 7Be and loss by decay:

dn

dt = 0 = -k neq + n* v Ps

where: n is the density of 7Be atoms on the surface at time t

k is the first-order decay constant for 7Be

neq is the steady-state surface density of"/Be in atoms cm-a
n* is the concentration of 7Be atoms in orbital space (atoms cm-3)
v is the spacecraft velocity (cm)(s-I)
Ps is the sticking probability of Be on a metal surface

for first order kinetics of radioactive decay:

k - In2
tl/2

where: tl/z is the half life

Thus we have:

r_ = n* V tmean Ps

where tmean = tl/2 = 76.8 days for 7Be
ln2

From the measured value of neq, assuming Ps = 1,

we have n* = 1.2 x 10 -7 cm "3 at 320km

or a relative concentration of 3.8 x 106 atoms per gram of air. In the peak production
region, below 20km, previous measurements (ref. 4-8) yield a concentration of 1000 7Be atoms
per gram of air, or .-.0.1 atoms cm-3, in agreement with a simple calculation using known values of
the cosmic-ray flux and the production cross-section for the isotope. Thus, the measured
concentration of 7Be per unit mass of air at 320km is three to four orders of magnitude greater than
it would be if it had been produced at that altitude.

The simplest explanation is that Be is quickly transported upwards from regions of the
atmosphere where its numerical concentration is much higher (but not its relative concentration
with respect to oxygen and nitrogen). This transport must take place on time scales similar to or
shorter than the radioactive half-life (53.2 days).

Vertical transport timescales at altitudes of several tens of km to 100km are considered to be
too long to provide an efficient source, but Petty (ref. 17) has shown that above a certain altitude
(not well defined, but about 100km) simple diffusion of the light nucleus in the Earth's
gravitational field would provide an enrichment of a factor of 500 or more at 300km. Turbulent
mixing below 100km cannot be easily invoked as it proceeds at times scales longer than the isotope
half-life. More detailed calculations are needed to see if closer agreement can be reached.
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ATMOSPHERICCHEMISTRYAND SURFACECHEMISTRYOFBe

Thusfar wehaveconsideredthechemicalform of Be to be single atoms of mass 7. At low

altitudes, rapid oxidation would be expected and in regions close to the tropopause, this would be
followed by rapid absorption onto aerosol particles. The raining-out of these Be-bearing aerosols
has proved a useful tool for measuring the efficiency of tropospheric mixing by thunderstorms.

If the Be were in the form of its normal oxide BeO (mass 23) at altitudes above 100 km, we

can no longer rely on rapid diffusion to higher altitudes. While not much appears to be known of
Be chemistry in the upper atmosphere, a great deal of work has been done on the chemistry of
metals ablated into the upper atmosphere from meteorites. These metals include Mg, Ca, A1, Si
and Fe.

7Be is formed as a "hot" atom or ion, which must rapidly thermalize with the atmosphere.
From studies of meteoritic ions in the atmosphere we may draw some general conclusion as to the
chemical form in which the Be atom will finally take. The form of the meteoritic ions is highly
variable with altitude and between day and night. Electropositive metals readily form positive ions:

Fe + hv --+ Fe+ + e

Fe + 02+ _ Fe ÷ + 02

At low altitudes neutralization may occur (X is a third molecule):

Fe+0 2+ X -->FeO_ + X

FeO2 ++ e -+ Fe + 0 2

In general at altitudes in excess of 100km the metal (M) oxides cannot survive in

appreciable quantities due to reactions such as

and

MO + + hv _ M + + 0

MO + + 0 ---) M + + 0 2

Thus at higher altitudes the singly-charged positive ion dominates for most metallic species
studied. Of interest is the ratio M+/M which varies with altitude and electropositive character of the
metal. Examples of some measured ratios from the literature (ref. 18) for silicon and iron are:

Si÷/Si = 0.006 at 96km
0.2 at 110km

Fe+/Fe = 5 at 100km
220 at 110km

Thus above 150km (and perhaps as low as 100km) most Be should exist as Be +.

Important reactions might be:

Be + hv --_ Be + + e

BeO + 02 + _ BeO ÷ + 02
BeO + hv --) BeO ÷ + e

BeO ÷ + O ---) Be ÷ + 02
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It is reasonable that a positive metal ion striking a clean metal oxide surface, especially with
several eV kinetic energy, should easily enter the oxide lattice and remain trapped. While most
metal (and metal oxide) surfaces in the ground-level atmosphere are usually found (by ESCA
techniques) to be covered with a layer of hydrocarbon contamination, this is not the case with the
leading surfaces of LDEF which are known to be continuously cleaned of combustible material by
the action of atomic oxygen in the atmosphere. These atomic oxygen/satellite surface interactions
have been intensively studied on the LDEF. The interaction of Be ions with metal oxides is an
example of a new kind of chemical reaction between atmospheric species and satellite surfaces and
has implications yet to be explored.

We investigated the form of binding of the Be to the aluminium surfaces on LDEF.
Possibilities included (1) binding within an adsorbed contaminant layer, for example of
hydrocarbon; (2) binding of Be-containing particulates, perhaps aerosols or meteoritic debris and
(3) binding within the native oxide found on aluminum and other metals. Two kinds of A1 plates
from the LDEF were measured, some with several microns of oxide produced by anodization and
the second type a polished A1 plate from the UAH Atomic Oxygen Experiment A0114 (ref. 19).
The oxide on this was only expected (ref.20) to be 50 - 100 A thick.

The polished AI plate was coated with a solution of Collodion, which was then dried,
stripped off and counted. No Be activity could be associated with the Collodion film. The method
is used in industry to reliably and quantitatively remove particulates from sensitive surfaces. Next
the plate was wiped first with alcohol, then with xylene. No activity was removed with the wipes.
Finally an acid etch was used to remove the top 10 microns of the surface. The etch solution
contained most of the Be activity formerly on the plate: that remaining being associated with either
unetched surface or with re-adsorption of Be 2÷ ions onto the A1. This might be expected since a
stable Be carrier solution was not used. The experimental results are consistent with the
hypothesis that the Be species were penetrating the aluminium oxide layer on the surface of the
plates and becoming permanently fixed in the oxide lattice. We believe the penetration to be of the
order of one nanometer, since the kinetic energy of the Be species relative to the spacecraft was
only 2.5eV. We do not have the capability to remove such a thin layer from large areas of metal
surfaces, and thus cannot measure a depth/composition profile for the species.

7Be is not the only nucleus produced by cosmic rays in the atmosphere. In fact all stable
nuclei of lesser atomic weight than oxygen, nitrogen and argon must be formed. The means to
detect the extremely small concentrations of most of these nuclides (in the presence of naturally
occurring levels) do not exist. A few other unstable nuclides exist however with half-lives long
enough to allow measurement, and short enough that there is no other natural background
concentration. These are lac, roBe and possibly 26A1 (from argon).

The only method sensitive enough to measure these nuclides is accelerator mass
spectrometry (AMS) (ref. 21). While the method has proved most useful for radioactive nuclei,
emission of radiation by decaying nuclei is irrelevant to the AMS technique. Rather, all atoms of
the nuclide are counted in the mass-spectrometer, giving some major advantages over radiation-
counting methods.

_°Be is produced in a similar manner to 7Be, by spallation of N and O induced by
secondary neutrons from cosmic ray interactions in the atmosphere. The production efficiency is
about 0.5 that of 7Be, however its half-life is 1.5 x 106 yrs (compared with 53.2d for 7Be),
resulting in measured ratios mBe/7Be of about 3 in the stratosphere (ref. 22). While the
atmospheric chemistry of the two isotopes should not differ appreciably, the diffusion of neutral
atoms to higher altitudes should show measurable differences because of atomic mass.

l°Be decays to mB by internal conversion, emitting electrons over a wide energy range,
while 7Be decays to 7Li by electron-capture, emitting gamma-rays of very narrow energy
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distribution. The latter allows rates of a few decays per day to be measured in our low-level
counting apparatus, while the former poses insurmountable counting problems. AMS however
can detect 10Be with undiminished sensitivity. We are currently working on chemical separation

techniques* and plan a 10Be run at the University of Pennsylvaniat in fall of 1991.

We also plan a search for another cosmogenic radioisotope, 14C, also using AMS. We plan

to use the NSF-Arizona facility_ to investigate the take up of 14C species by blanket material from

LDEF. Carbon chemistry is completely different from that of the metals. Cosmogenic carbon
should form CO and CO2 rapidly in the lower atmosphere but its behavior at higher altitudes is
unknown. Upwards diffusion of the oxide species would not be favored (their masses are 28 and
44) and the adsorption on spacecraft materials is unknown.

*Herzog, G.F. and Albrecht, A., Rutgers University, Dept. of Chemistry, Wright-Rieman
Laboratory, New Brunswick, NJ, 08901, personal communications.

tKlein, J. and Middleton, R., University of Pennsylvania, Dept. of Physics, David Rittenhouse

Lab, Room 1N12, 209 South 33rd St., Philadelphia, PA 19104-6396, personal
communications.

_Jull, A.J.T., University of Arizona, NSF-Arizona Accelerator Facility, Tuscon, Arizona 85721,
personal communications.
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Figure 1. The LDEF spacecraft, showing the location of pieces of material studied for
induced radio-activity
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seen only on the leading side.
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Portion of the gamma-ray spectrum taken from the stainless steel trunnion (a) on the

leading side and (b) on the trailing side of the LDEF. The 7Be line is seen only on
the leading side, whereas the spallation products produced within the steel itself,
54Mn and 22Na are seen on both trunnions.
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:2Na activities for aluminum tray clamps taken from around the LDEF. The leading

edge is 0 deg. and the trailing edge 180 deg. Activity is peaked at the trailing edge
but found all round the spacecraft. As expected from the anisotropic cosmic ray
and trapped proton fluxes, more activity is induced in materials on the westerly
(trailing) side of the spacecraft.
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